Bilevel programs with extremal value function: global optimality
نویسندگان
چکیده
For a bilevel program with extremal value function, a necessary and sufficient condition for global optimality is given, which reduces the bilevel program to a max-min problem with linked constraints. Also, for the case where the extremal value function is polyhedral, this optimality condition gives the possibility of a resolution via a maximization problem of a polyhedral convex function over a convex set. Finally, this case is completed by an algorithm.
منابع مشابه
Necessary Optimality Conditions for Multiobjective Bilevel Programs
The multiobjective bilevel program is a sequence of two optimization problems, with the upper-level problem being multiobjective and the constraint region of the upper level problem being determined implicitly by the solution set to the lower-level problem. In the case where the Karush-Kuhn-Tucker (KKT) condition is necessary and sufficient for global optimality of all lower-level problems near...
متن کاملSensitivity Analysis for Two-level Value Functions with Applications to Bilevel Programming Sensitivity Analysis for Two-level Value Functions with Applications to Bilevel Programming Herstellung: Medienzentrum Der Tu Bergakademie Freiberg Sensitivity Analysis for Two-level Value Functions with Applications to Bilevel Programming
This paper contributes to a deeper understanding of the link between a now conventional framework in hierarchical optimization spread under the name of the optimistic bilevel problem and its initial more difficult formulation that we call here the original optimistic bilevel optimization problem. It follows from this research that, although the process of deriving necessary optimality condition...
متن کاملNecessary Optimality Conditions in Pessimistic Bilevel Programming Necessary Optimality Conditions in Pessimistic Bilevel Programming
This paper is devoted to the so-called pessimistic version of bilevel programming programs. Minimization problems of this type are challenging to handle partly because the corresponding value functions are often merely upper (while not lower) semicontinuous. Employing advanced tools of variational analysis and generalized differentiation, we provide rather general frameworks ensuring the Lipsch...
متن کاملNew Necessary Optimality Conditions for Bilevel Programs by Combining the MPEC and Value Function Approaches
The bilevel program is a sequence of two optimization problems where the constraint region of the upper level problem is determined implicitly by the solution set to the lower level problem. The classical approach to solving such a problem is to replace the lower level problem by its Karush–Kuhn–Tucker (KKT) condition and solve the resulting mathematical programming problem with equilibrium con...
متن کاملOptimality Conditions for the Linear Fractional/quadratic Bilevel Problem
Bilevel programs are optimization problems which have a subset of their variables constrained to be an optimal solution of another problem parameterized by the remaining variables. They have been applied to decentralized planning problems involving a decision process with a hierarchical structure. This paper considers the linear fractional/quadratic bilevel programming (LFQBP) problem, in which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005